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I. INTRODUCTION

Considerable theoretical effort has been expended in the last quarter
in refining and extending the work on stabilized conductors and multi-
dimensional effects rcported in Hoag, et al. [1]. This is in line with our
goal of striving to attain a better understanding of the operation of high field
superconducting coils and of predicting coil performance accurately from
information regarding short sample terminal characteristics. All analyses
concern the behavior of a short sample of superconductor which has been
stabilized by placing it in electrical and thermal contact with a normally
conducting substrate. This composite conductor is immersed in a liquid
helium bath and exposed to an externally applied magnetic field. It will be
assumed throughout that the current-carrying capacity of the superconductor
is given by

s _ b
I—c - Tc - Tb W
where:
Is = current carried by the superconductor
T = temperature of the superconductor
IC = critical current corres'ponding to ‘the'bath temperature, Tb
and the externally applied magnetic field

Tc = critical temperature corresponding to zero current and the

externally applied field

To classify the analyses in this area and to clarify some of the in-
herent assumptions, it is advantageous to begin by writing the steady-state
energy equation for a material element.

0= W, + v+ (KVT) - 2 (T-Ty) (2
- where:
Wi = heat generated per unit volume
T = temperature of the element
k = thermal conductivity (in general, a function of T)



h = heat transfer coefficient between the surface of the element
and its environment; in general a function of temperature

T, = temperature of the environment

\%

vector differential operator ''del"
P' = (volume of the element)/(heat transfer surface area)

This is the fundamental governing equation in each of the cases to be
discussed. Each model is chosen so as to exemplify a single effect or refine
an earlier analysis.

II. ANALYSES INVOLVING "ZERO" DIMENSIONS

The term zero dimensions will hereafter refer to the neglect of the
second term in Eq. (2) and corresponds to the assumption that there is no
spatial variation of temperature. Such an analysis was presented in detail
in Hoag, et al. [ 2] for the case where k is constant, W. is the sum of the
ohmic dissipation and an additional specified heat source per unit volume,
and the substrate is assumed to be in good electrical and thermal contact
with the superconductor. The following section presents a simplified method
in which the variation of heat transfer coefficient with temperature is con-
sidered,

A. Variable Heat Transfer Coefficient

Since the heat transfer from a conductor to liquid helium is tem-
perature dependent, especially if the surface temperatures are high enough
so that transition from nucleate to film boiling occurs, it is important to
evaluate these effects and to determine whether (and how) the concepts de-
veloped using constant h analyses must be modified,

In the current sharing situation, the voltage per unit length developed
in a conductor composed of a superconductor and a substrate in good thermal
and electrical contact is given by

v=LR 1 - (3)
where:
-ﬁ = resistance per unit length of substrate
I = total conductor current
f = fraction of the total current flowing in the substrate




Using Eq. (1), the fractional current in the normal conductor is

I I T - T
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Tc - Tb

If the conductor has a cooled perimeter, P, then the heat flux per
unit area is

2
wo- vl . plAt
" = Tp % PA (3)

Substituting Eq. (4) in Eq. (5) yields
p1° I T - T I
TS Y-S S - Y-
17 PaA [1 S )] i (6)

If we are given % , Te, and I.*, together with an empirical curve of q"
versus surface temperature rise, then a family of curves with I/IC as
parameter may be plotted on the same graph by using Eq. (6). The inter-
sections of these curves with the original empirical curve represent valid
operating points and, since the heat flux at each value of I/IC is thus deter-
mined, the voltage-current terminal characteristics can be found from

gt P 1
v = 54— (§) (7)
C

Note that the g' corresponding to a given value of I/IC is determined from
one of the points of intersection on the graph.

The characteristic form of the voltage current plot then indicates
whether the particular coil is stable.

B. Effect of Thermal Contact Resistance

In all previous analyses, it has been stated that the superconductor
is in good thermal contact with the substrate. This is equivalent to assuming
that there is no discontinuity in temperature at the interface. This section
presents a simple model which exhibits the effects of a finite thermal contact
resistance.

*In a short sample test involving a constant externally applied field, L, T,
and I. correspond to the values at the applied field. Ina superconduéing
magnet, these variables are functions of the current, I, since this deter-
mines the field strength.



Using the notation of the previous sections, the heat generated per
unit length in the superconducting portion of a composite conductor is

2
I
g, = vI(1-9) = B (1-9) (8)

and the heat generated per unit length in the substrate is

q = vIf=L 1% ¢ (9)

Assuming that the heat generated in the superconductor must be
transferred to the normal substrate through a contact heat transfer coef-
ficient, h;, over an interface perimeter, P;, the difference in temperature
between the superconductor and substrate is

2
T, - T, s ppx £01-D (10)
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The total heat generated in the conductor must be transferred to the
liquid helium bath over a perimeter, P, and with a heat transfer coefficient,
h, which is assumed to include the thermal resistance of any insulation. The
temperature rise of the substrate above the liquid helium bath is, then:

QIZf
T, - Ty = %A (11)

Adding Eqs. (10) and (11) yields the temperature difference between the
superconductor and the bath, '

2 2
- - pl pl" -
T, - Ty = hwpa ftenpa £ O-D (12)

1 1

The following equation may now be developed using Eqs. (1) and (12) and
the definition of f

1
C

o (%—)Zfz-[(wrai)li-1](%)f+1-11—=0 (13)
C C C

where:
2
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Equation (13) may be solved for f. Then with Eq. (1) and the expression for

the voltage, the voltage per unit length and the superconductor temperature
may be determined. The results arc:

1 a + a, 1 a + a. 1 2 l -7
f =1 i i LI 4 | ——
2 2

a a a T a, T

a. .. T . .
i i i i
(14)
+a 1 a+ta 1 1-7
e er 3]s V(s
V_plc SiT s ZT; ) e ( i )-4< 2)§
a; a; T a, o, T a, T
(15)
T - T ) a + a. 1 [a+ai 1 2
9=T - T =l-74+327 a. T a. . ‘ri a. T a T
c i i i i
- (16)
. T
where: al
. S
T T 1
c

In searching for a stability criterion, we require that condition which
corresponds to the onset of a positive resistance in a composite conductor
when the current reaches the short sample critical current of the super-

conductor. We, therefore, consider 9 at 7 =1 andf = 0. This may be

shown to be 3 7
oV _ 1
B " T-(atap (7
7=1
f =0

In order for the slope of voltage vs current to be positive at the critical cur-
rent, then, it is necessary that

a + a. < 1 (18)



Equation (18) is the required condition for stability.

Typical behavior is illustrated in Fig. 1 which was obtained by plot-
ting Eq. (15) for a = 0.5 and various values of a;. For this case, if a; =
0.5 then the voltage will remain zero until 7 reaches one. At this point,

a voltage will appear and will increase continuously and controllably as 7
increases further. For a; >.5 (in general, for a + a; > 1), the voltage
current curves are double valued. Since operation on the part of a partic-
ular curve (specified a, a;) which corresponds to negative resistance is

impossible, it may be expected that for
1) =71 R-TR (a, ai), all current will flow in the superconductor,

2) forT, =7 <1, however, the current will transfer to the sub-
strate” if a disturbance occurs. The voltage will then rise
discontinuously from zero to that determined by the positive
resistance portion of the curve specified by a and aj. In order
to recover to a fully superconducting state, it is then necessary
to lower 7 to 7, where the voltage will discontinuously decrease
to zero. (Note Rthat if no disturbance occurs, then the voltage
must still rise discontinuously when 7 reaches one).

The function TR = TR (a, a;) may be found from Egs. (14), (15), or
(16) under the condition that f, V, or # must be single valued at 7 = TR.
These ""recovery' conditions may be shown to be:

1 _ (a-ai)ﬂ:ZJ/-aai+ai(a+ai)2
TR °\T - 2 (19)
C R (a+ai)
I -7
R
R =J——z‘ (20)
% TR
v A
_ R _
Vg = I =fp Tr (21)
TS —Tb 2 '
6R= T -7 = [a-ai(l - fR) fR TR (22)
c b
R
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Fig. 1 Illustration of the Effect of Thermal Contact Resistance Between

the Superconductor and Substrate.
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The results of the above analyses are best summarized graphically
in maps (Figs. 2 and 3 ) having a and a; as coordinates and lines of con-
stant recovery conditions on it, so that given a and a;, then the recovery
current, its distribution, and conductor voltage per unit length at recovery
can be read off directly., Conversely, the graph can be used to determine
the effective values of a and a; from the fraction of short sample current at
recovery and the voltage per unit length just prior to recovery.

It is important to determine the effect on the stability criterion due
to the possibility of self-generated heat as may occur, for example, in a
contact., From another viewpoint, a heater may be used for diagnostic
purposes., To consider this effect, assume that any heat generated flows in-
to the substrate and from there to the helium bath, so that the temperature
difference between the superconductor and substrate is still given by Eq. (10).

If an amount of heat, 0 is generated per unit length, then Eq. (12)
becomes

p 1% p1? 9o
Ts-Ty=%pa * hPA £ -0+ 35 - (23)

A relation for f, 7, a, and a; analogous to Eq. (13) may now be found,

ai'rzfz -[(a+ai)T—l]Tf+l—T-Qho=0 (24)

where

0 _ %o
ho hP (Tc - Tb)

By setting f = 0 in Eq. (24), it is clear that current begins to transfer
into the substrate when

T =1 -Q (25)

ho

If we then require that %—V at7 = 1- Qh and f = 0 represent positive
resistance, the stability driterion will be éStablished. In this way, it may
be shown that

Q©
<

1
1-(1 -Qho)(a+ai)

(26)

Q
~

ho
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Fig. 2 Recovery Current TR and Recovery Voltage VR as a Function
of a and aj.
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Fig. 3 Recovery Current and Recovery Current Distribution as a
Function of a and a;.
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Hence, stability requires that

(1 - Qho) (a + ai) =7 (a + ai)< 1 (27)

This implies that a conductor, which is subjected to enough heating to produce
a2 normal region, will exhibit stable, positive resistance behavior for current

T <

a + a.
i

III. ONE-DIMENSIONAL EFFECTS

Initial results regarding the behavior of a one-dimensional composite
conductor consisting of a superconductor in good electrical and thermal con-
tact with a normal conductor were reported in Hoag, et al. [ 3]*. In that
report, the governing equation (Eq. (2))was written as

2 2
o=9%+kAa—-'-_2_- - hP(T - T,) (28)
9 x

where h and k are assumed constant, P is the cooled perimeter, A is the
cross-sectional area, and f is the fraction of the total current I which flows
in the substrate, The latter is characterized by the resistivity p.

Equation (28) is then made dimensionless in terms of

—T-Tb
0 FoT
C b
S x = o KA
(-"_x ' 6 T ¥V hP
o]
S
T =1
C
2
pI-,

a =
BPA (T_- T,)

*In Hoag, this was referred to as a two-dimensional analysis. We will hence-
forth adopt the convention that ar21 analysis is one-dimensional if the form of
the VZ operator in Eq. (2) is 8_2_ , two-dimensional if it is % '58—; (¢ -5%),

and three dimensional if it is 3¢ ——12—- 9 (g?‘ —8—-).

g 9t ot




The conductor is subjected to a disturbance in the form of a specified heat
input 91 at the origin. In dimensionless form, this is written:

) 9h1
hl 2 JBPKA (T -T,)

The form of the governing equation is dependent on f and solutions
for the temperature are found for two cases:

Q

1) The two-region case, where Q . at the orgin is such that
0< f < 1.0 at the origin, hence, the conductor operates in
a condition such that the current is shared between the super-
conductor and the substrate for { < A{ and all the current is in
the superconductor for { >A L.

2) The three-region case, where Qp, is high enough so that
f>1.0at ¢ = 0, hence, the conductor operates in a condition
such that essentially all the current is in the substrate for
0 <¢ <tj, the currentis shared for {, <t <{; + A{, and all
the current flows in the superconductor for {> {; + AC.

Expressions for the voltage developed across the '"terminals' of the
conductor are determined next and three classes of behavior are then shown
for a particular case by plotting the voltage vs heat input at the origin for
various values of the parameter a and for constant current. These curves
are shown in Fig. 4 for later reference.

Since that time, a detailed analysis of the stability of the above con-
figuration has been carried out and stability criterion have been developed
analytically. This consisted of determining the conditions under which

g \Q[hl — o, For the particular case of 7 = 0.5 shown in Fig. 4, it may
be seen that —g—(\g is always finite when a is small enough. This represents
single valued, hlgtable operation in which the voltage is zero until Qy;
reaches a certain value, then it increases monotonically with positive slope.
For a large, thereis a maximum value of Qhl for which a solution exists
that is, increasing Qh at constant current, results in an uncontrolled
quench when Qj reaches this maximum value. Between these two extremes
is a range of a in which hysteretic behavior is observed. For these cases,
operation is exemplified in Fig. 4 by the curve g-a-f-b-c-d-c-e-f-a-g as
Qpj is increased from zero to that value corresponding to point d and back
to zero.

In general, the type of behavior is dependent on the value of a, 7T,

and Qp1- It may be shown that g—}é must remain finite for a 7 2 <1,
hence, as indicated in Fig. 5, hl the region bounded by the axes and

_12-
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Fig. 4 Terminal Voltage as a Function of Heat Input. Three classes
of behavior are shown.
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Fig. 5 Stability Diagram Indicating Range of a, 7 over which Stable,
Hysteretic, or Unstable Behavior Occurs.
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the curve a TZ = 1 represents stable operation. For u'rz > 1, g—% —
when le reaches a '"take-off' value given by: hl

Q - Ne7 (1-7) (29)
mT " T

This corresponds to attaining a ''take-off'" length

1 1
At ={aT - 1) 2 arctan [(aT - 1)—'2] (30)

T

In addition, it may be shown that { — <« when a 72 =(2 - 7). This is
the quench condition, that is V — og). The curve aT =2 - 7 as well as
curves for constant Q) and A{y are also plotted in Fig. 5. This is inter-
preted as follows:

1) For a, 7 such that a'rz < 1, the behavior of the system is stable
in the sense that %_%?11 is always finite and positive.

2) For a, T such that a TZ > (2 - 7), the behavior is unstable since
the voltage will rise as Q) is increased until Qp) = Qp ;7 (or, correspon-

dingly, A{ = A?;T), at which time V — oo,

3) For a,7 such that 1< aTZ < (2 -T), the behavior is hysteretic
in that the voltage continuously rises to a value at which Q,, = Qpj1 when
it increases discontinuously to another finite value. The conductor will then
not regain its superconducting state until Qp1 is lowered through a recovery
value (Qp1R < Qn1T) where the voltage decreases discontinuously to zero or
a relatively small value.

Figure 6 is a graph of Qp; vs T for a = 3 and clearly represents the
different regions of operation for different values of 7.

1) For 7 < 1 , the stable range, no voltage is exhibited until Q
reaches the value @ corresponding to the intersection of the 7 = constant,
line of operation with the Qn] = (1-7) curve which represents the onset of
resistance. If Qj) continues to increase, the voltage increases in a stable
manner as shown in the insert.

2) If the line of operation lies in the unstable range, there is no
voltage until Qp; = (1 - 7), then the voltage increases controllably until the

intersection with the thT curve at which time quench occurs (i.e., v — o).

3) The hysteretic range may be subdivided into two-regions.
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3a) For 7 in region "a', there is again no voltage until Q}; =
(1 - 7). As Qp is increased, V increases until Q = Qp1 T When a
discontinuous rise in voltage occurs. If Q; is then reduced to the value
indicated by the intersection with the Qj,;g curve, V will decrease dis-
continuously and a recovery will be mage to a condition of positive resistance.

3b) Operation in this range is similar to that in region "a’" with
the important difference that recovery is made to a condition of zero voltage,
that is, to the fully superconducting state. The relation between a and 7 for
the condition where Qp R is equal to (1 - 7) may be shown to be

2 2

1 -7

A plot of the values of the critical voltages for the case of a = 5 is
shown in Fig., 7.

1) For 7 in the region indicated, operation is stable.

2) For T in the unstable region, the voltage may increase as
far as the curve labeled V. at which quench will occur.

3a) In the hysteretic '"a' region, the voltage may be increased to
V. where it will discontinuously rise to the value indicated by the V' curve.
1f Qpq is then decreased, the voltage will decrease to the value indicated by
the VR curve. At this point, it will decrease discontinuously to the value
represented by the intersection of the line of operation with the V'' curve.
Further decrease in Qp) leads to a continuous decrease in V to zero.

3b) In the hysteretic ''b'' region, operaticn is analogous to that in the
"a' region except that the voltage drops discontinuously to zero at recovery,

Figure 8 is similar to Fig. 7 in that it shows the take-off and recovery
voltages, This is done for a range of values of a. Several corresponding
points are labeled in the two plots to aid interpretation of Fig. 8.

IV. THREE-DIMENSIONAL EFFECTS

It may be expected that the effects exhibited by a multi-dimensional
treatment of the stabilization problem would be qualitatively similar to those
which are indicated by the zero and one-dimensional analyses, however,
when attempting to obtain experimental correlation, it is well to have an
indication of any changes in the stability criterion which may occur as a
result of the actual three-dimensional nature of the heat transfer problem.
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IVa, THE q — « CASE

This section deals with the limiting case where there is no cooling
provided by helium within the coil. The governing relation is Eq. (2) with
the last term neglected. A point heat source is assumed at the origin.
This injection of a finite amount of heat requires an infinite temperature
gradient at the origin and leads to a condition where only a three-region
solution is possible:

1) Aregion0 <{¢ < in which all the current flows in the sub-
strate, °©

2) A region L, =t =¢, in which the current is shared, and

3) A region{ > (- where all the current flows in the superconductor,

Begin by writing Eq. (2) in its three-dimensional form

o-w, + £ 8 (221, (32)
i 2
r or ar

We now specify the ohmic dissipation per unit volume to be

12
W, =1 R (33)
i AZ

voltage per unit length

[
!

>
i

wire volume
total volume

A thus allows for the packing factor or any volume not producing heat
(e.g., insulation). If we now use Eq. (1) and

T - T,
g = ——— (34)
Tc - Tb
I
C
L = — (36)
(o]

-20-
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2
kA% (T - T.)
r? = < b (37)

prC

then the governing equation in region 1 where f = 1, may be shown to be

1 ] 9 0
— — @ —1) + 7% =0, 0, (38)
4 9 L
In region 2 (0 < f < 1) the current is shared and the situation is governed by
1 ) 5 0 92
—'2"_"'(@ _—)+792’T(1'T)=0’§o<§<g1 (39)
g 9L 9L

The proper equation for region 3 (f = 0), in which all the current is in the
superconductor, is

1 9 8 0
— —(@w? = =0 >y (40)

4 9t L

The boundary conditions for this configuration are:

63 -0 as { — oo (41)
d 6, d 5
92 = 93 = (1- T) and I = & at ¢ = 41 (42)
d g, do,
91 = 92 = 1 and -T2 at £ = ¢ o (43)
d6 q '

2 1 ! _ h3

t° - — Q3 = - TrEr (T -Ty b0 (44
o' ¢ b

It may be shown that the solution to these three differential equations subject
to the given boundary conditions is

1 1
o, = (kg -t - Qg - )t (45)

-21-



92 = g'l [C sin(ﬁ t) + D cos(F 2;)] + (1 -17) (46)

[ao)
1

, = u-ne et (47)

where:

The lengths ;,1 and go are determined by

N7 -] - g—f—TT—— (48)

and

(L, Q
cos [F(gl-go)] ='(1-T)_1[T _ g _ §h3] (49) .
)

Equations (48) and (49) may be manipulated to show that

' (é ) .J 2 3
Qs = L, [T - (1 - 'r) L, T (50)
The condition for which g—%—,-— — o is of particular interest since it

represents instability, V 1sh3 closely related to Lo ; however, so that it

is only necessary to determine the ''take-off' heat Qh3T or '"take-off',

9&
length, ¢ T’ for whichy-ao, — «, By equating 9 Qh3 /9 g to zero,

¢ may be found to be h3 given by:
6 2 -3 4 2 -4 .2 2 -7
Lo +(t°+27-1) 71 Lo T (T -47 +2) T goT+(1-T) (1-27)7 =0 .

Py

(51)

-22-




1
Equation (51) may now be used together with Eq. (50) to find Q 3T Qh3T
(7), which is plotted in Fig. 9. A process of curve fitting may ™~ then
be used to show that the curve is closely approximated by

, 0.88
Q
T 0.97

3T (0.72)

(52)

in the range of interesi. For constant current operation, QLQ may be in-
creased up to the value of Q, indicated by the intersection of the line of
operation with the Q curve. At that time { — e« and, in turn, V— oo,
This behavior is 111us%rated in Fig. 10 which is 1 plot of Eq. (50) for se-
lected values of 7. Operation on the dashed portion of the curves is not
possible. Note that { remains finite as 7 — 0. This results from the bound-
ary condition at the oroig1n which requires an infinite temperature gradient to
"drive" a finite Qj 3.

IVb. THE CASE OF ARBITRARY a

A study has been initiated concerning a configuration similar to that
in the previous section with the important difference that all three terms are
retained in Eq. (2). We, therefore, begin by writing

0=-w + £ & 22%, b p_ 1

> (53)
r or ar P!

b)

where P' is a characteristic length related to the cooling by the helium within
the winding. It is essentially the ratio of the coil volume to the internal heat
transfer surface area. Using Egs. (1), (33), (34), (35), and the definition

of f, together with

y = L
5 7 r
o)
2
Apl P
a -
2
(T - Tb) ’
and Kkx
r2= —2
(o] h )

it may be shown that the governing equation for:

1) The region where all the current is carried by the substrate
(f=1) is:

-23-
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Fig. 9 Heat Input as a Function of Current; QT is that value of Q_ g
at which quench occurs.
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Fig. 10

A7448
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Dimensionless radius over which the coil is normal versus heat
input at the origin. Quench occurs when 9 40/8 Q‘h3—> o,



1 9 2 391
—, — (" —=) - 8, ta 7% =0, 0<t< ¢ (54)
g 9L 9L

2) The region where current is shared (0<f<1)is

1 ) 2 392
— — (g —=) - 6, (1-a7) -a7 (1 -7)=0,¢ <{<{, (55)
4 9t 9L

3) The region where all the current is in the superconductor (f = 0)
is
1 ) 5 93
—, (¢ ) - 65 =0, > ¢, (56)
£~ 98¢ 9L

The boundary conditions are Eqgs. (41), (42), (43), and

d o q
2 1 _ h3
5 ( 12 )" " P 5T TaRi (T, - 1) as{ —0 (57)

It may be shown that the solution to the three differential equations subject
to the stated boundary conditions is:

(o)
[H}

| = (¢ sinhg ) [Qh3 sinh ({_ - £) + £ (1 - a7?) sinh r,] + ar? (58)

6, =t [C1 sin (Va7 =T 1) +C, cos (Va7 -17)| - &TU"T) for a7 >1
i (59)
6, =t [C3 sinh (NI-a 7 ) + C, cosh (NI-aT 0 eIl or a7 <1
(60)
o, = (1-71) ¢ty e 1) (61)
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where:

¢, (1 -7) p——r
Clz—-l——-——-——— sin (Va7-1§1)+£1_7) laT,,-(_-,l COS(O-’T'lgl)
L~ ar Jor -1 1@
(62)
£,(1 - 7) i-7 [ a7 ]
C,= — cos (Nat -1 gl) - -4, sin(\/aT-lgl)
1 - aT NaT -1 l-arT
(63)
¢,(1-7) (1-71) aT
C3=-——————sinh(N/—1_-—<:-L-77L1)+ . -4 cosh (N1 - a7 Ql)
1 - aT l-a7 |l -ar7T
(64)
. (1 -7) (1 -171) aT
C4=—-1————cosh('\}1-a’r t;l) - [ -él] Sinh(Vl-aTél)
(1 - a7) l-a7 |l ~-0aT

(65)

When a7 > 1, the lengths L, * &, are determined by

cos [m(él‘éo)] . [ . aT) -1] Sin[ eTs 1(41'2;0)]

Vor-1 b1
f_..o(l-a’r)
= g ) (56)
and
. 1l ~-a7t aT
sin {NaT - 1(¢, -¢ )] + -1] cos |NaT - 1(t,-1¢)
[ 1 0] NaT -1 [t_,l (1 - aT) ] |:° 1 o]
N Q. 5 1-a7%
= gl (1-7) sinh éo -(l -aT77)(cosh go - 1)4—;7F—:—r— (67)
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When a 7< 1, the lengths L, * &, are determined by

C’1J-—1-T) cosh[«fl_-——;(g-g)]-—u"rl[a'r -g]sinh
- 1) SRR BNl BRI

2
[1_(17 (41_40)]=§ (1-a77) (68)

o (1l ~aT7)

and

-
4

-t 1-7) inh ['\/1 -aT ((,1 - go) + (1-7) [ a7 . gl] cosh

1(1-(17') NT - a7 1l -ar7

sinhgo

Q
[\/1 TaT (L - go)] —(1-ar) 2| 2B L0 ar? (cothy_ -1)
L

l1-a71

+ gl-a'rzz] (69)

From Egs. (66) and (67), it may now be shown that Lo™ % when a'r3 = 1.
This is analogous to the condition that V—~ « when aT““ =(2 - 7)in the
one-dimensional situation, This implies that for o, T such that a 73> 1,
quench will occur ({ - =) when Qn3 approaches a take-off value. These
conditions for QpT have not yet been determined, but are being investigated.
Other conditions which are needed are those corresponding to the limits of
stability and those indicating hysteretic performance.

V. COIL OPERATION AT SUPERCRITICAL PRESSURES*

A series of tests were conducted to gain an insight into any change in
the operating characteristics of superconducting coils when cooled with super-
critical helium rather than the usual method of cooling with liquid helium at
1 atm. This involved a facility which allowed small coils to be excited and
driven to quench while immersed in helium at 4. 2°K and pressures from 0
to 45 psig. Since the magnitude of the quench current is dependent on the
ability of the heat transfer environment to cool and, in turn, prevent the
propagation of a localized normal region (4, 5), these tests provided an
indication of the cooling efficiency at elevated pressures relative to that at
0 psig for particular coil constructions.

To create a pressurized coil environment, a vessel was constructed,
as shown in Fig. 11, from a short length of brass pipe and caps. The vessel
was pressurized through a stainless steel tube which also served as a con-
duit for the instrumentation leads to the two carbon resistors and for the

*This work was supported in part by the Avco Corporation IRD Program.
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Fig. 11 Experimental Apparatus to Test Coil Operation in a Supercritical
Pressure Environment.
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leads to the coil voltage taps. Three superconducting power leads entered
the vessel via three ceramic feed-throughs and were solder-joined to the
leads on the coil.

The procedure was to mount a coil on the coil support, connect the
power and instrumentation leads, assemble the vessel, purge the system
with a helium flow from the bottle and out the purge hole, seal the purge
hole, leak test the system, pre-cool and immerse the entire assembly in
liquid helium. Initially, a great deal of boil-off was observed as the helium
from the gas supply was being condensed by the cold walls of the vessel,

In each case, it was evident when the liquid level in the vessel rose and
covered first the lower temperature probe and then the higher. A short
time after the higher probe was covered, boil-off was no longer evident.

Each coil was tested under various initial conditions on pressure.
This was controlled via the regulator on the gas bottle and the test began
after the upper probe indicated a temperature of 4. ZOK, the temperature
of the bath. In each case, as coil current was increased, no change in
initial pressure or temperature was observed until the coil developed a
resistance. After quench, the pressure and temperature rise were depen-
dent on the magnitude of the quench current itself, since this determines
the amount of energy dumped into the confined vessel.

Figure 12 indicates typical test results. In each case, quench
current decreased somewhat as pressure was increased above 0 psig. For
coil B, the change in performance was much more pronounced. This coil
exhibited a relatively large voltage prior to quench, hence, the rate of
energy deposition to the environment before quench was much larger and
the decrease in the ability of the environment to cool the coil at increased
pPressure is more evident,

The results imply that improved pelbformance may not be expected
for coils of the type tested operating at 4. 2"K and pressures between 0 and
40 psig.

CONCLUSION

The previous sections have presented results regarding the behavior
of composite conductors. The theoretical model in each section was chosen
so as to exemplify the effects of a particular characteristic. It is clear that
the zero- and one-dimensional theories are fairly complete, but that the
study of three-dimensional effects is still under development.

A test facility is now under construction for the purpose of providing
experimental evidence for the confirmation of the predicted behavior. Results
will indicate those areas in the developing theory which require extension and
refinement as well as those portions which are complete. It is important
to note at the outset that the models which are being used, qualitatively ex-
hibit all of the characteristics which are observed in the laboratory.
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